Suites

Exercice 1 | Calculs de termes d'une suite.

1. Soit la suite (U_n) définie par $U_0 = 3$ et pour tout entier naturel n,

$$U_{n+1} = 2U_n - 1$$
. Calculer U_2

Il est nécessaire de calculer U_1 pour avoir U_2

On a:
$$U_1 = 2U_0 - 1 = 5$$
 puis $U_2 = 2U_1 - 1 = 9$

Réponse : $U_2 = 9$

2. Soit la suite (U_n) définie par $U_0 = -4$ et pour tout entier naturel n,

$$U_{n+1} = nU_n + 6$$
. Calculer U_1 , U_2 et U_3

On a:
$$U_1 = 0 \times U_0 + 6 = 6$$

puis
$$U_2 = 1 \times U_1 + 6 = 12$$

puis
$$U_3 = 2 \times U_2 + 6 = 30$$

Réponse :
$$U_1 = 6 ; U_2 = 12 ; U_3 = 30$$

3. Soit la suite (V_n) définie par $V_0 = 2$, $V_1 = 4$ et pour tout entier naturel n,

$$V_{n+2} = (n-2)V_{n+1} - V_n$$
. Calculer V_2

On a:
$$V_2 = -2V_1 - V_0 = -8 - 2 = -10$$

Réponse :
$$V_2 = -10$$

Exercice 2 Donner une expression de S_{n+1} en fonction de n dans les cas suivants :

1.
$$S_n = \frac{2n-1}{3}$$

 $S_{n+1} = \frac{2(n+1)-1}{3} = \frac{2n+1}{3}$

Réponse : $S_{n+1} = \frac{2n+1}{3}$

2.
$$S_n = 3n^2 - n$$

$$S_{n+1} = 3(n+1)^2 - (n+1) = 3(n^2 + 2n + 1) - n - 1 = 3n^2 + 5n + 2$$

Réponse :
$$S_{n+1} = 3n^2 + 5n + 2$$

3.
$$S_n = (3n-1)^2$$

$$S_{n+1} = (3(n+1) - 1)^2 = (3n+2)^2 = 9n^2 + 12n + 4$$

Réponse :
$$S_{n+1} = 9n^2 + 12n + 4$$

Exercice 3 Soit la suite (W_n) définie pour tout entier naturel $n \ge 2$ par

$$W_n = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}.$$

1. Calculer W_3

$$W_3 = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$

Réponse : $W_3 = \frac{5}{6}$

2. Exprimer W_5 en fonction de W_3 puis en déduire W_5

$$W_5 = W_3 + \frac{1}{4} + \frac{1}{5}$$
 donc $W_5 = W_3 + \frac{9}{20}$ donc $W_5 = \frac{5}{6} + \frac{9}{20} = \frac{50 + 27}{60} = \frac{77}{60}$

Réponse : $W_5 = \frac{77}{60}$

3. Exprimer W_{n+1} en fonction de W_n .

Réponse : $W_{n+1} = W_n + \frac{1}{n+1}$

Exercice 4 Soit la suite (S_n) définie pour tout entier naturel $n \ge 1$ par

$$S_n = 2^2 + 2 \times 2^3 + 3 \times 2^4 + \dots + n \times 2^{n+1}$$

1. Calculer S_2 .

$$S_2 = 2^2 + 2 \times 2^3 = 4 + 16 = 20$$

Réponse : $S_2 = 20$

2. Exprimer S_{n+1} en fonction de S_n

Réponse : $S_{n+1} = S_n + (n+1)2^{n+2}$

Exercice 5 Utiliser la notation \sum pour définir les sommes suivantes :

1.
$$W_n = \frac{1}{2-3} + \frac{1}{2-4} + \frac{1}{2-5} + \dots + \frac{1}{2-n}$$
 pour $n \ge 3$

Réponse : $W_n = \sum_{k=2}^n \frac{1}{2-k}$

2.
$$S_n = 2^2 + 2 \times 2^3 + 3 \times 2^4 + \dots + n \times 2^{n+1}$$
 pour $n \ge 1$

Réponse : $S_n = \sum_{k=1}^n k \times 2^{k+1}$

Exercice 6 Reconnaitre des suites arithmétiques ou géométriques parmi les cas sui-

vants:

1.
$$U_{n+1} = U_n - \sqrt{2}$$

4.
$$U_{n+1} = 5 - U_r$$

7.
$$U_{n+1} = U_n + n$$

1.
$$U_{n+1} = U_n - \sqrt{2}$$

2. $U_{n+1} = \frac{U_n}{3}$
4. $U_{n+1} = 5 - U_n$
5. $U_{n+1} = -U_n$
8. $U_{n+1} = 3U_n - 1$

5.
$$U_{n+1} = -U_n$$

8.
$$U_{n+1} = 3U_n - 1$$

3.
$$U_{n+1} = -4 + U_n$$
 6. $U_{n+1} = U_n \times 2$

$$6. \ U_{n+1} = U_n \times 2n$$

Réponse : 1., 2., 3., 5. En effet:

1.
$$U_{n+1} = U_n - \sqrt{2}$$
 Suite arithmétique de raison $-\sqrt{2}$

2.
$$U_{n+1} = \frac{U_n}{3}$$
 Suite géométrique de raison $\frac{1}{3}$ car $U_{n+1} = U_n \times \frac{1}{3}$

3.
$$U_{n+1} = -4 + U_n$$
 Suite arithmétique de raison -4 car $U_{n+1} = U_n - 4$

5. $U_{n+1} = -U_n$ Suite géométrique de raison -1 car $U_{n+1} = U_n \times (-1)$ Les autres suites ne peuvent pas s'écrire sous la forme $U_{n+1} = U_n + r$ ou

Exercice 7 Déterminer le nombre de termes dans les sommes suivantes :

1. $U_0 + U_1 + \cdots + U_{12}$

 $U_{n+1} = U_n \times q$ avec r et q constants.

Remarque : si on a $U_1 + \cdots + U_{12}$, on va de 1 à 12 donc 12 termes, auquel on rajoute le terme U_0 , soit un terme de plus.

Réponse : 13 termes

2. $U_{10} + U_{11} + \cdots + U_{30}$

Remarque : si on a $U_1 + \cdots + U_{30}$, on va de 1 à 30 donc 30 termes, auxquels on retire les termes U_1, \ldots, U_9 soit 9 termes en moins donc un total de 30 - 9 = 21.

Réponse : 21 termes

3. $2+2^2+2^3\cdots+2^{40}$

Remarque : on a : $2^1 + 2^2 + 2^3 \cdots + 2^{40}$, on va de 1 à 40 donc 40 termes

Réponse : 40 termes

4. $\sqrt{3} + \sqrt{4} + \sqrt{5} + \cdots + \sqrt{25}$

Remarque : si on a : $\sqrt{1} + \sqrt{2} + \sqrt{3} + \sqrt{4} + \cdots + \sqrt{25}$, on va de 1 à 25 soit 25 termes, on retire les termes $\sqrt{1}$ et $\sqrt{2}$ soit deux termes en moins donc au total 23 termes.

Réponse : 23 termes