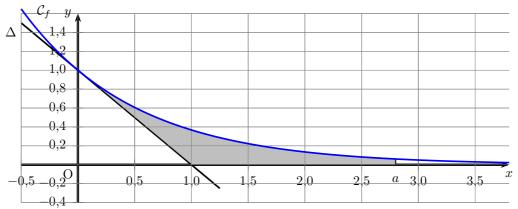
Exercice 1 On considère la fonction f définie sur \mathbb{R} par : $f(x) = e^{-x}$

On note C_f la courbe représentative de la fonction f et Δ la droite d'équation y = -x + 1 dans un repère orthonormé du plan.



Soit a un nombre réel vérifiant a > 1. On appelle D le domaine colorié sur le graphique délimité par la courbe C_f , la droite Δ , l'axe des abscisses et la droite d'équation x = a. On note A l'aire, exprimée en unité d'aire, du domaine D.

- 1. Déterminer en fonction de a la valeur de A.
- **2.** Déterminer la limite de \mathcal{A} lorsque a tend vers $+\infty$.
- 3. Pour a=2, donner une valeur approchée de l'aire en cm² arrondie au mm².

Exercice 2 On considère la fonction f définie sur]0; $+\infty[$ par : $f(x) = 1 + \ln(x)$

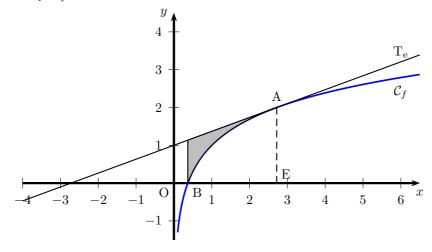
On note \mathcal{C}_f la courbe représentative de f dans un repère du plan.

On note A le point de \mathcal{C}_f d'abscisse e et on note T_e la tangente à \mathcal{C}_f au point A.

On note B le point d'intersection de C_f avec l'axe des abscisses.

Le point E est le projeté orthogonal du point A sur l'axe des abscisses

On admettra que sur]0 ; $+\infty$ [, C_f reste en dessous de T_e .



1. On considère la fonction g définie sur]0; $+\infty[$ par $g(x)=x\ln x.$

Démontrer que la fonction g est une primitive de la fonction f sur]0; $+\infty[$.

2. Déterminer la valeur exacte de l'aire, exprimée en unités d'aire, du domaine limité par C_f , T_e et les droites parallèles à l'axe des ordonnées passant par B et E. Ce domaine est grisé sur le graphique.

Donner une valeur approchée arrondie au millième de cette aire.