Raisonnement par récurrence

Montrer une inégalité Correction

Exercice 1

Soit la suite (U_n) définie par $U_0=0$ et pour tout $n\geqslant 0, \quad U_{n+1}=3U_n-2n+3$

Démontrer par récurrence que pour tout $n \in \mathbb{N}$, on a : $U_n \geqslant n$.

• Inititialisation (pour n = 0)

On a : $U_0 = 0$ donc $U_0 \ge 0$.

et donc $U_n \ge n$ est vrai pour n = 0.

• Hérédité

Soit un entier $n \ge 0$, tel que $U_n \ge n$. On va démontrer que $U_{n+1} \ge n+1$

On a:

$U_n \geqslant n$

 $3U_n \geqslant 3n$ Multiplication par un nombre positif, le sens de l'inégalité ne change pas

$$3U_n - 2n \geqslant n$$

$$3U_n - 2n + 3 \geqslant n + 3$$

or
$$n+3 \geqslant n+1$$

donc
$$3U_n - 2n + 3 \ge n + 1$$

CQFD

• Conclusion

D'après le principe de raisonnement par récurrence, pour tout $n \ge 0$ on a : $U_n \ge n$.

Exercice 2

On considère la suite numérique (U_n) définie sur \mathbb{N} par : $U_0 = \frac{2}{3}$ et pour tout entier n, $U_{n+1} = U_n (2 - U_n)$.

On considère la fonction $f: x \longmapsto x(2-x)$.

On admet que cette fonction f est croissante sur [0; 1].

Démontrer par récurrence que, pour tout entier $n, 0 < U_n < 1$.

• **Inititialisation** (pour n = 0)

On a $U_0 = \frac{2}{3}$ donc $0 < U_0 < 1$ et donc $0 < U_n < 1$ est vrai pour n = 0.

• Hérédité

Soit un entier $n \ge 0$, tel que $0 < U_n < 1$. On va démontrer que $0 < U_{n+1} < 1$.

On a :
$$0 < U_n < 1$$

La fonction f est croissante sur [0; 1], donc : $f(0) < f(U_n) < f(1)$

soit
$$0 < U_{n+1} < 1$$
.

CQFD

• Conclusion

D'après le principe de raisonnement par récurrence pour tout entier $n, 0 < U_n < 1$.

Récurrence : Inégalité - Correction 1/2

Exercice 3

Soit la fonction f définie sur l'intervalle [0; 2] par : $f(x) = \frac{2x+1}{x+1}$

Soit la suite (V_n) définie sur \mathbb{N} par : $V_0 = 2$ et $V_{n+1} = f(V_n)$ pour tout entier naturel n.

On admet les propriétés suivantes : • f est croissante sur l'intervalle [0; 2]

- Si $x \in [1 ; 2]$ alors $f(x) \in [1 ; 2]$.
- 1. Montrer à l'aide d'un raisonnement par récurrence que pour tout entier naturel $n, 1 \leq V_n \leq 2$.
- 2. Montrer à l'aide d'un raisonnement par récurrence que pour tout entier naturel $n, V_{n+1} \leq V_n$.
- 1. Montrer à l'aide d'un raisonnement par récurrence que pour tout entier naturel $n,\ 1\leqslant V_n\leqslant 2.$
 - Inititialisation (pour n = 0)

On a : $V_0 = 2$ donc $1 \leqslant V_0 \leqslant 2$ et donc $1 \leqslant V_n \leqslant 2$ est vraie pour n = 0

• Hérédité

Soit un entier $n \ge 0$, tel que $1 \le V_n \le 2$. On va démontrer que $1 \le V_{n+1} \le 2$.

On a : $1 \leq V_n \leq 2$

La fonction f est croissante sur [0; 2], donc : $f(1) \leq f(V_n) \leq f(2)$

soit
$$\frac{3}{2} \leqslant V_{n+1} \leqslant \frac{5}{3}$$
. or $1 \leqslant \frac{3}{2}$ et $\frac{5}{3} \leqslant 2$ (Remarque: $2 = \frac{6}{3}$)

donc $1 \leqslant V_{n+1} \leqslant 2$

CQFD

• Conclusion

D'après le principe de raisonnement par récurrence, pour tout entier naturel $n,\ 1\leqslant V_n\leqslant 2.$

- **2.** Montrer à l'aide d'un raisonnement par récurrence que pour tout entier naturel $n, V_{n+1} \leq V_n$.
 - Inititialisation (pour n = 0)

On a : $V_1 = f(V_0) = f(2) = \frac{5}{3}$ et $V_0 = 2$ donc $V_1 \leqslant V_0$ et donc $V_{n+1} \leqslant V_n$ est vraie pour n = 0

• Hérédité

Soit un entier $n \ge 0$, tel que $V_{n+1} \le V_n$. On va démontrer que $V_{n+2} \le V_{n+1}$.

On a: $V_{n+1} \leq V_n$ avec V_n et V_{n+1} dans [1; 2].

En effet:

- d'après la question 1, on a $1 \leq V_n \leq 2$
- De plus si $x \in [1; 2]$ alors $f(x) \in [1; 2]$ alors sachant que $V_{n+1} = f(V_n)$, on a donc $V_{n+1} \in [1; 2]$.

f est croissante sur [0; 2], donc à partir de $V_{n+1} \leq V_n$, on a donc $: f(V_{n+1}) \leq f(V_n)$

soit $V_{n+2} \leqslant V_{n+1}$

CQFD

• Conclusion

D'après le principe de raisonnement par récurrence, pour tout entier naturel $n, V_{n+1} \leq V_n$.