Propriétés algébriques de la fonction ln

Exercice 1

Simplifier les expressions suivantes :

$$A = \ln\left(e^3\right)$$

$$B = \ln\left(e^{-4}\right)$$

$$C = \ln\left(\frac{1}{2e^5}\right)$$

$$C = \ln\left(\frac{1}{2e^5}\right) \qquad \qquad D = \ln\left(\sqrt{5} + 2\right) + \ln\left(\sqrt{5} - 2\right)$$

Exercice 2

Réduire ou écrire sous une autre forme si c'est possible :

$$A = \ln(x) + \ln\left(\frac{1}{x}\right)$$

$$B = 3\ln(x) - \ln(y)$$

$$C = -\ln(x) - \ln(y)$$

$$D = \ln(x) - \ln(x^2 + x)$$

$$E = \ln(x + 1)$$

$$G = \ln(x) \times \ln(y)$$

$$J = \frac{\ln(x)}{\ln(x^2)}$$

$$H = \ln(x) \times \ln(x^2)$$

Exercice 3

Ecrire les expressions suivantes sous la forme $\ln (A(x))$:

$$A = \ln\left(x^2 - 1\right) - 2\ln\left(x - 1\right) \qquad \qquad B = \frac{1}{2}\ln\left(x + 2\right) + 3\ln\left(x\right) \qquad \qquad C = -\ln\left(\frac{x}{3}\right) - 5\ln\left(x\right)$$

$$B = \frac{1}{2}\ln(x+2) + 3\ln(x)$$

$$C = -\ln\left(\frac{x}{3}\right) - 5\ln\left(x\right)$$

Exercice 4

Pour tout réel x, soit $f(x) = \ln((x+1)^2) - \ln((x-1)^2)$

Exprimer f(-x) en fonction de f(x).

Exercice 5

Soit la suite (U_n) définie pour tout entier naturel n par $U_0 = 1$ et pour tout entier $n \ge 0$ $U_{n+1} = e^2 U_n$.

On pose pour tout entier naturel $n, V_n = \ln(U_n)$

Remarque : La suite (V_n) est bien définie car on démontre par récurrence que pour tout entier $n, U_n > 0$.

- 1. Démontrer que la suite (V_n) est arithmétique. Préciser sa raison et son premier terme.
- **2.** Exprimer V_n en fonction de n.
- **3.** En déduire U_n en fonction de n.

Exercice 6

Soit la suite (U_n) définie pour tout entier naturel n par $U_0 = 1$ et pour tout entier $n \ge 0$ $U_{n+1} = \frac{U_n^2}{5}$.

On pose pour tout entier naturel n, $V_n = \ln\left(\frac{U_n}{5}\right)$

Remarque : La suite (V_n) est bien définie car on démontre par récurrence que pour tout entier $n, U_n > 0$.

- 1. Démontrer que la suite (V_n) est géométrique. Préciser sa raison et son premier terme.
- **2.** Exprimer V_n en fonction de n.
- **3.** En déduire U_n en fonction de n.