Calculatrice interdite

Le soin apporté et la rédaction seront pris en compte dans la notation

Exercice 1

...... 3 points

Les questions sont indépendantes.

1. Soit
$$f(x) = \frac{\sqrt{x} - x}{3}$$
 pour $x > 0$

Dériver la fonction f.

2. Soit
$$f(x) = \frac{2}{1+x^2}$$
 pour $x \in \mathbb{R}$

Le plan étant muni d'un repère orthonormé, déterminer une équation de la tangente à \mathscr{C}_f au point d'abscisse 1.

Exercice 2

_ 4 points

Soit la suite (U_n) définie par $U_0=2$ et $U_{n+1}=\frac{2U_n}{2+3U_n}$ pour tout $n\in\mathbb{N}$

et la suite (V_n) définie pour tout entier naturel n par $V_n = 1 + \frac{2}{U_n}$.

- 1. Démontrer que la suite (V_n) est arithmétique de raison 3.
- 2. Exprimer V_n en fonction de n puis en déduire U_n en fonction de n.

Exercice 3

4 point

Soit (W_n) la suite définie par : $\left\{ \begin{array}{ll} W_0 &=& 0 \\ W_{n+1} &=& \frac{1}{2-W_n} \end{array} \right. \ \, \text{pour tout entier naturel } n$

À l'aide d'un raisonnement par récurrence, démontrer que, pour tout entier naturel n, $W_n = \frac{n}{n+1}$.

Exercice 4

9 points

- 1. Soit la suite (U_n) définie par $U_0 = 4$ et pour tout $n \ge 0$ par $U_{n+1} = \frac{3}{2}U_n 5$.
 - a. Calculer U_1 et U_2 .
 - **b.** Justifier que la suite (U_n) n'est ni arithmétique ni géométrique.
- 2. On désigne par (V_n) la suite définie, pour tout entier naturel n, par $V_n = U_n 10$.
 - a. Démontrer que la suite (V_n) est une suite géométrique.
 - **b.** En déduire l'expression de V_n en fonction de n puis l'expression de U_n en fonction de n.
 - **c.** Calculer $V_0 + V_1 + V_2 + \cdots + V_n$ puis en déduire $U_0 + U_1 + U_2 + \cdots + U_n$