Calculatrice interdite - Durée 2 heures

Exercice 1

9 points

Soit (U_n) la suite définie par $U_0=10$, $U_1=9$ et, pour tout entier naturel n, $U_{n+2}=\frac{3}{2}U_{n+1}-\frac{1}{2}U_n$

- 1. On considère la suite (V_n) définie pour tout entier naturel n par $V_n = 2U_{n+1} U_n$.
 - a. Démontrer que (V_n) est une suite constante.
 - **b.** En déduire que, pour tout entier naturel n, $U_{n+1} = \frac{1}{2}U_n + 4$
- **2.** a. Démontrer par récurrence que, pour tout $n \ge 0$, $5 \le U_{n+1} \le U_n$
 - **b.** En déduire que la suite (U_n) est convergente.
- 3. On considère la suite (W_n) définie pour tout entier naturel n par $W_n = U_n 8$
 - a. Démontrer que (W_n) est une suite géométrique dont on précisera le premier terme et la raison.
 - **b.** En déduire que, pour tout entier naturel n, $U_n = 2\left(\frac{1}{2}\right)^n + 8$
 - c. Calculer la limite de la suite (U_n) .

Exercice 2

2 points

Déterminer la fonction f telle que pour tout réel x, $2f'(x) + \frac{3}{4}f(x) = 1$ et f(0) = 3

Exercice 3

4 points

On considère l'équation différentielle : y' = 2y(3-y) (E)

On suppose qu'il existe une fonction f solution de (E) qui ne s'annule pas sur $\mathbb R$ et qui vérifie f(0)=4

Pour $x \in \mathbb{R}$ on pose $g(x) = \frac{1}{f(x)}$.

- 1. Démontrer que g est solution de y' = -6y + 2 (E')
- 2. Résoudre (E')
- 3. En déduire une expression de la fonction f.

Exercice 4

5 points

On considère l'équation différentielle : $2y' + y = e^{-\frac{x}{2}}(x+1)$ (E')

- 1. Résoudre l'équation différentielle : 2y' + y = 0 (E)
- **2.** Déterminer deux réels m et p tels que la fonction f définie sur \mathbb{R} par : $f(x) = e^{-\frac{x}{2}} \left(mx^2 + px \right)$ soit solution de (E')
- 3. En déduire les solutions de (E').
- 4. Existe-t-il une solution de (E') dont la représentation graphique dans un repère donné passe par le point A(2; 1)?