Calculatrice autorisée - Durée 2 heures

Exercice 1

3 points

Calculer une primitive de f dans les cas suivants :

$$f(x) = \frac{1}{\sqrt{x}} \left(\sqrt{x} - 3 \right)^5$$

①
$$f(x) = \frac{1}{\sqrt{x}} (\sqrt{x} - 3)^5$$
 ② $f(x) = \frac{e^{3x}}{2(e^{3x} + 1)^2}$ ③ $f(x) = \frac{e^{\frac{1}{x^2}}}{x^3}$

$$(3) \quad f(x) = \frac{e^{\frac{1}{x^2}}}{x^3}$$

Exercice 2

3 points

Calculer les limites suivantes :

①
$$\lim_{x \to -\infty} \frac{x^2 + x}{7x + 2}$$
 ② $\lim_{x \to 3} \frac{x^2}{6 - 2x}$ ③ $\lim_{n \to +\infty} \frac{7^n + 3}{3^n + 2}$

$$\lim_{\substack{x \to 3 \\ x > 3}} \frac{x^2}{6 - 2x}$$

$$\lim_{n \to +\infty} \frac{7^n + 3}{3^n + 2}$$

Exercice 3

_ 10 points

On considère la suite (U_n) définie par $U_0 = 0$ et, pour tout entier naturel n,

$$U_{n+1} = 3U_n - 2n + 3$$

- **1.** Calculer U_1 et U_2 .
- a. Démontrer par récurrence que, pour tout entier naturel n, $U_n\geqslant n$. 2.
 - **b**. En déduire la limite de la suite (U_n) .
- 3. a. Démontrer que la suite (U_n) est croissante.
 - **b.** La suite (U_n) est-elle majorée?
- **4.** Soit la suite (V_n) définie, pour tout entier naturel n, par $V_n = U_n n + 1$.
 - a. Démontrer que la suite (V_n) est une suite géométrique.
 - **b.** En déduire que, pour tout entier naturel n, $U_n = 3^n + n 1$.
- 5. **a.** Pourquoi peut-on affirmer qu'il existe un entier n_0 tel que, pour tout $n \ge n_0$, $U_n > 10^6$?
 - **b.** Déterminer à l'aide de la calculatrice le plus petit entier n_0 qui satisfait la condition : pour tout $n \ge n_0$, $U_n > 10^6$.

Exercice 4

4 points

On considère la suite (U_n) définie pour tout entier naturel n par $U_n = \frac{2^n}{n!}$

- a. Démontrer que la suite (U_n) est décroissante.
 - **b**. En déduire que la suite (U_n) converge
- **2.** On admet que pour tout $n \ge 2$, on a $2 \times 3^{n-2} \le n!$

En déduire la limite de (U_n) .

_____ Hors Barème _____

Démontrer par récurrence que pour tout $n \geqslant 2$, on a : $2 \times 3^{n-2} \leqslant n!$